Simultaneous approximation of a real number by all conjugates of an algebraic number

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Approximation of a Real Number by All Conjugates of an Algebraic Number

Using a method of H. Davenport and W. M. Schmidt, we show that, for each positive integer n, the ratio 2/n is the optimal exponent of simultaneous approximation to real irrational numbers 1) by all conjugates of algebraic numbers of degree n, and 2) by all but one conjugates of algebraic integers of degree n + 1.

متن کامل

Approximation of the n-th Root of a Fuzzy Number by Polynomial Form Fuzzy Numbers

In this paper we introduce the root of a fuzzy number, and we present aniterative method to nd it, numerically. We present an algorithm to generatea sequence that can be converged to n-th root of a fuzzy number.

متن کامل

SIMULTANEOUS RATIONAL APPROXIMATION TO THE SUCCESSIVE POWERS OF A REAL NUMBER by Michel LAURENT

Let n be an integer ≥1 and let θ be a real number which is not an algebraic number of degree ≤ n/2 . We show that there exist >0 and arbitrary large real numbers X such that the system of linear inequalities |x0|≤X and |x0θ−xj |≤ X−1/ n/2 for 1≤j≤n, has only the zero solution in rational integers x0,...,xn. This result refines a similar statement due to H. Davenport and W. M. Schmidt, where the...

متن کامل

Detecting Simultaneous Integer Relation for Real Vectors and Finding the Minimal Polynomial of an Algebraic Number

Let x1, · · · , xt ∈ R. A simultaneous integer relation for xi is a vector m ∈ Z \ {0} such that mxi = 0 for i = 1, · · · , t. Combining advantages of HJLS algorithm and PSLQ algorithm, we propose a numerically stable simultaneous integer relation detecting algorithm, which will construct a relation for x1, · · · , xt within O(n4 + n log λ(x)) arithmetic operations, where λ(x) is the least Eucl...

متن کامل

Approximation Classes for Real Number Optimization Problems

A fundamental research area in relation with analyzing the complexity of optimization problems are approximation algorithms. For combinatorial optimization a vast theory of approximation algorithms has been developed, see [1]. Many natural optimization problems involve real numbers and thus an uncountable search space of feasible solutions. A uniform complexity theory for real number decision p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2007

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa127-1-5